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Laser Doppler velocimetry (Lbv) and video flow visualization are used to investigate
the creeping motion of a highly elastic, constant-viscosity fluid flowing past a
cylinder mounted centrally in a rectangular channel. A sequence of viscoelastic flow
transitions are documented as the volumetric flow rate past the cylinder is increased
and elastic effects in the fluid become increasingly important. Velocity profiles
clearly show that elasticity has almost no effect on the kinematics upstream of the
cylinder, but that the streamlines in the wake of the cylinder are gradually shifted
further downstream. Finite element calculations with a nonlinear constitutive model
closely reproduce the evolution of the steady two-dimensional velocity field.
However, at a well defined set of flow conditions the steady planar stagnation flow
in the downstream wake is experimentally observed to become unstable to a steady,
three-dimensional cellular structure. The Reynolds number at the onset of the flow
instability is less than 0.05 and inertia plays little role in the flow transition. Lpv
measurements in the wake close to the cylinder reveal large spatially periodic
fluctuations of the streamwise velocity that extend along the length of the cylinder
and more than five cylinder radii downstream of the cylinder. Fourier analysis shows
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266 G. H. McKinley, R. C. Armstrong and R. A. Brown

that the characteristic spatial wavelength of these flow perturbations scales closely
with the cylinder radius R. Flow visualization combined with LDV measurements also
indicates that the perturbations in the velocity field are confined to the narrow region
of strongly extensional flow near the downstream stagnation point. A second flow
transition is observed at higher flow rates that leads to steady translation of the
cellular structure along the length of the cylinder and time-dependent velocity
oscillations in the wake. Measurements of the flow instability are presented for a
range of cylinder sizes, and a stability diagram is constructed which shows that the
onset point of the wake instability depends on both the extensional deformation of
the fluid in the stagnation flow and the shearing flow between the cylinder and the
channel.

1. Introduction

Operating limits are encountered in many industrial polymer processing applications
at very low volumetric flow rates due to the onset of instabilities which are entirely
absent in the corresponding flow of purely newtonian fluids (Petrie & Denn 1976).
These instabilities develop at low Reynolds numbers and typically originate from the
viscoelastic nature of the polymeric material. Over the past decade, significant
progress has been made in understanding the spatial and temporal symmetries of
viscoelastic flow instabilities by studying a number of simple test geometries that
model individual elements of more complex commercial processing operations.
Probably the best studied example to date is the transition from steady, two-
dimensional creeping motion to a time-periodic, three-dimensional state that occurs
in the flow of a highly elastic fluid between concentric circular cylinders. This
Taylor-Couette instability is purely elastic in the sense that fluid inertia does not
play a role in determining the onset of instability, and the flow transition occurs at
a vanishingly small Taylor number. Instead, the relevant control parameter
governing the onset of instability is the Deborah number which can be defined as a
dimensionless ratio of an intrinsic time scale A for the viscoelastic fluid (e.g. a
characteristic polymer relaxation time) and a characteristic residence time 7 for the
flow geometry under study. Above a critical value De,, the steady, circular, base flow
becomes unstable to a supercritical Hopf bifurcation and toroidal cells develop which
propagate radially across the cylinder gap. Experimental studies (Muller et al. 1989),
analytic predictions (Larson et al. 1990) and numerical calculations (Northey et al.
1991; Avgousti ef al. 1991) have provided excellent agreement on the spatial form of
the secondary flow, the onset point of the instability and the dependence on
dimensionless gap width. The spatial and temporal structures of other low Reynolds
number viscoelastic instabilities have also recently been documented in von Karman
swirling flows such as those experienced in cone-and-plate and parallel-plate
rheometric devices (Magda & Larson 1988; McKinley et al. 1991a), and in
Taylor-Dean rotational flows (Joo & Shaqfeh 1992). An extensive review of both
elastic and inertial viscoelastic instabilities is given by Larson (1992).

Progress has been slower, however, in understanding the complex two- and three-
dimensional geometries more typical of those encountered in commercial processing
operations. Linear stability analyses are limited by the fact that, in most cases, no
exact analytic solution exists for the steady base flow. Large-scale numerical
simulations using simple quasilinear constitutive equations provide a qualitative
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Viscoelastic wake instabilities 267

description of flow visualization experiments (cf. Walters & Webster 1982; Binding
et al. 1987), and recently quantitative agreement with steady-state experimental data
has become possible through the use of more realistic, but computationally more
expensive, rheological models (Coates et al. 1992; Rajagopalan et al. 1992). To date,
the stability of such flows at high Deborah numbers has been determined by direct
experimental measurements. Simple flow visualization experiments provide an
indication of globally unstable structures within a flow; however, visualization yields
only qualitative information about the kinematics, such as the evolution of
streamline shapes, and is generally limited to steady flows. In unsteady flows the
particle tracks vary in time, and this can lead to apparent intersection of fluid
streamlines (Binding et al. 1987). Semi-quantitative results may be extracted from
the simple streak photographs obtained in flow visualization by manual measure-
ments of the length and direction of individual particle tracks (Cable & Boger
1978). The spatial resolution of these measurements is limited, especially in flows
with a wide dynamic range of velocities, such as flows involving recirculations,
stagnation points or boundary layers. More accurate measurements of the spatial
and temporal dynamics associated with viscoelastic flow transitions are imperative
if experiments are to serve as a guide to future advances in numerical simulation of
non-newtonian flows at high Deborah numbers.

Quantitative measurements of the velocity field are made by means of laser
Doppler velocimetry (LpV). This technique has a wide dynamic range, is capable of
resolving kinematic information on very localized length scales, and can yield both
steady and time-dependent velocities. LDV is particularly useful in viscoelastic fluid
mechanics since it is non-invasive to the local flow field being studied. More
traditional measuring techniques, however, are known to be associated with well
documented non-newtonian phenomena that lead to systematic errors in de-
termination of kinematic data; common examples include the ‘hole-pressure effect’
in recess-mounted pressure transducers and the Uebler effect associated with the
motion of tracer bubbles (Bird et al. 1987a). We used a three-colour, computer-
controlled LDV system to document the sequence of flow transitions and nonlinear
dynamics that develop in the entry flow of a highly elastic fluid through axisymmetric
contractions (McKinley et al. 1991b). These measurements have shown that the
macroscopic evolution of the vortex shape and size observed in earlier streak
photographs (Boger 1987) was directly connected with a supercritical Hopf
bifurcation to three-dimensional time-periodic motion near the re-entrant corner of
the contraction. The time periodic nature of the flow was invisible to the streak
photographs.

Here we report three-colour LDV measurements of the stability of viscoelastic flow
past a circular cylinder. The experimental test geometry is shown in figure 1 and
consists of a smooth circular cylinder of radius ® mounted centrally in a long planar
channel of height 2H. Such geometric configurations ocur very commonly during
extrusion operations, in which a polymer melt is forced under pressure past a die-
forming element or mandrell that is typically held in place by cylindrical supports or
spiders (Pearson 1985). A detailed investigation of this geometry also is a logical
precursor to the study of more tortuous viscoelastic flows across arrays of cylinders
that occur, for example, during matrix impregnation of fibrous composites (Skartsis
et al. 1992) or flow through porous media (Georgiou et al. 1991).

The symmetry points (S;,S,) at the front and rear of the cylinder surface are
stagnation points where polymer molecules will have large residence times in the
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Fully Developed
Upstream Flow

Stagnation
Points =

Fully Developed
Downstream Flow

Figure 1. Viscolastic flow past a circular cylinder constrained in a planar slit. The cylinder of radius
R is mounted centrally in the channel which has a half-height H. The cylinder—channel ratio is
defined as § = R/H. A cartesian coordinate system is defined with its origin at the centre of the
cylinder and the z-axis aligned with the flow direction.

vicinity of the cylinder, resulting in the development of large molecular extensions
and significant elastic stresses. This stress boundary layer may result in significant
modification of the fore/aft- and centreplane-symmetry in the velocity field that is
predicted for the equivalent creeping flow of a newtonian liquid (Bairstow et al. 1922,
1923). These stresses can lead to the development of ‘weld lines’ in the wake of the
obstacle, which, in turn, cause considerable degradation of the ultimate material
properties of plastics extruded past submerged bodies (Tadmor & Gogos 1979).

If the average velocity of the fluid approaching the cylinder is denoted as <{v,),
then a characteristic residence time for the geometry may be defined as 7 = R/{v,)
and the Deborah number is then De = A{v,>/R. The ratio of the cylinder radius to
the channel half-height is defined as the cylinder—channel ratio, f = R/H. Recent
studies of viscoelastic flow transitions in other complex geometries have shown that
the resulting dynamic behaviour is extremely sensitive to relevant dimensionless
geometric parameters, such as the plate aspect ratio in swirling flows (McKinley et al.
1991a), the contraction ratio in entry flows (McKinley et al. 1991b) and the
dimensionless gap width in circular Couette flow (Shaqfeh et al. 1992). The
experimental geometry used in this investigation is designed so that cylinders with
varying radii can be inserted into the channel, and results are presented for cylinder-
channel ratios in the range 0.16 < f < 0.50.

The study of non-newtonian flow in this geometry has not been afforded the
intense attention that has been focused in the past on viscoelastic entry flows. Yet,
in many ways, this geometry is ideally suited as a test problem for viscoelastic fluid
mechanics. Far upstream and downstream of the cylinder the flow is fully developed
plane Poiseuille flow, but the complex fluid motion near the cylinder is a ‘mixed flow’
containing regions in the narrow gap between the cylinder and the walls where
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shearing effects are dominant, and other regions near the upstream and downstream
stagnation points where significant extensional effects occur. The relative con-
tributions of these effects can be varied by considering different values of the
cylinder—channel ratio . These characteristics are analogous to those obtained in
entry flows by varying the contraction ratio; however, in contrast to the contraction
flow geometry, computational representations of this flow domain do not contain any
geometric singularities, and hence the flow problem is more amenable to numerical
simulations. For these reasons the analogous axisymmetric problem of viscoelastic
flow around a sphere constrained in a cylindrical tube has recently been adopted as
a benchmark problem for numerical computations (Hassager 1988; Crochet 1988;
Lunsmann et al. 1993).

Early interest in viscoelastic flows around cylindrical and spherical objects arose
from the central importance of standard flow measurement devices, such as hot wire
anemometers and falling ball viscometers. Elasticity was found to perturb
significantly the flow field around the body, and this resulted in alterations in the
correlations of heat transfer and drag coefficients used to interpret the experimental
measurements (see, for example, Leslie & Tanner 1961; Smith et al. 1967).
Experimental studies of non-newtonian flow past spheres have been reviewed
recently by Walters & Tanner (1992), and here we focus only on the less well studied
case of flow past cylindrical bodies. Previous investigations may be grouped into two
categories ; studies of the creeping flow of highly elastic polymer solutions and melts
past cylinders at high Deborah numbers but vanishingly small Reynolds numbers,
and studies of higher speed flows of dilute polymer solutions at moderate values of
De and Re.

Early analyses of non-newtonian creeping flow past a cylinder focused on two
questions. What modifying influence does elasticity have on the velocity field,
particularly the shape of the streamlines near the cylinder, and additionally how does
the dimensionless drag coefficient O, vary with increasing De? The first detailed
theoretical analysis of viscoelastic flow past a cylinder was performed by Ultmann &
Denn (1971) using the upper convected Maxwell (ucMm) model. The Oseen
approximation was used to linearize the momentum equation and by limiting the
flow to small deformation rates the constitutive equation was reduced to the linear
viscoelastic Maxwell model. This latter simplification is a much more severe
limitation than the Oseen approximation, since the stagnation points on the cylinder
surface lead to large velocity gradients and significant polymer deformations even at
low Reynolds numbers. The approach has been criticized by Mena & Caswell (1974)
and by Zana et al. (1975), since the approximation is not uniformly valid throughout
the domain for any non-zero value of De and results in an over-specified set of
boundary conditions.

The contribution of Ultmann and Denn is significant, however, because it
indicated for the first time the possibility of a change of type in the visoelastic
governing equations. The mathematical type of the equations was found to depend
on the ratio of the mean cross-flow velocity to the velocity at which shear waves
propagate through the elastic liquid. This dimensionless ratio can be expressed as the
product of the Reynolds number and Deborah number; for ReDe < 1 the equation
set is elliptic and the velocity solutions are smooth everywhere; however, for
ReDe > 1, i.e. for velocities greater than the wave speed, the equation set becomes
hyperbolic and discontinuities, or shocks, can propagate along the fluid streamlines
(cf. Joseph & Saut 1986). Although Ultmann and Denn’s final expression for the drag
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270 G. H. McKinley, R. C. Armstrong and E. A. Brown

coefficient is limited to small values of Re De, they show that as elastic effects become
important in the flow the drag coefficient decreases from the Stokes-Lamb solution
expected for a newtonian fluid (Lamb 1932). The streamlines obtained by Ultmann
and Denn indicated a large upstream displacement relative to the newtonian
streamlines, even at very low values of De. Flow visualization experiments using dye-
streaks to follow the streamlines around the cylinder also were presented for a
newtonian fluid and a weakly viscoelastic carboxymethylcellulose solution. At a
Deborah number of De = 3.2 x107® the streamlines in the viscoelastic fluid were
observed to be significantly shifted upstream. However, only one experimental
observation was presented and no conclusions can be drawn about the effects of
varying the Deborah number on the flow patterns.

Mena and co-workers carried out several investigations of creeping viscoelastic
flow past cylinders and spheres. Mena & Caswell (1974) provided a rigorous matched
asymptotic expansion valid for flows in the range Re <€ 1 and De < 1 for the Oldroyd-
B constitutive equation. In direct contrast to the work of Ultmann and Denn,
elasticity shifted the streamlines downstream by a distance of O(De), and reduced the
drag coefficient quadratically from the Stokes-Lamb solution for flow past a
cylinder. Similar O(De?) reductions in the drag coefficients have been predicted
theoretically for viscoelastic flow around a sphere (Leslie & Tanner 1961 ; Caswell &
Schwarz 1962). Mena and Caswell’s theoretical analysis agreed with experiments
performed by Broadbent & Mena (1974) for flow around cylinders and spheres.
Experimental measurements of the drag force confirmed a quadratic reduction in
drag at low at De; however, flow visualization pictures showed no visually discernible
streamline displacement upstream or downstream. In later experiments with
cylinders, Manero & Mena (1981) used solutions of polyacrylamide in glycerine and
water to span a wide range of De at low Re. For De < 1 a small downstream shift of
the streamlines was observed; however, at higher Deborah numbers, De > 1, this
shift was reversed and a larger upstream displacement of the streamlines could be
seen. This initial downstream shift, followed by a larger upstream shift at high De,
also was documented by Christiansen (1980) using dilute polyacrylamide solutions
and two colour LDV measurements.

Walters and co-workers (Cochrane ef al. 1981; Dhahir & Walters 1989) have
investigated the constraining effects of side-walls by placing the cylinder in a
square duct with a high cylinder—channel ratio of f = 0.6. The effects of fluid
rheology were explored by using aqueous, shear-thinning solutions of poly-
acrylamide, a highly elastic, constant viscosity ‘ Boger fluid’, and an aqueous solution
of Xanthan gum (a rigid rod polymer). For each of these fluids, fluid elasticity was
found to result in a reduction of the drag force on the cylinder; however, streak
photographs again showed no difference between the streamlines observed for
newtonian and non-newtonian fluids. Dhahir and Walters also investigated the
effects of an asymmetric placement of the cylinder in the channel. Increasing the
eccentricity of the cylinder placement reduced the drag force exerted on the cylinder
while introducing a lift force normal to the flow and directed towards the closest wall.

The first numerical simulations to show the effects of elasticity on the flow
characteristics were presented by Pilate & Crochet (1977) using a second-order-fluid
model (Bird et al. 1987a). The authors found that for low Re and De the drag
coefficient decreased from the newtonian value as observed in the experiments of
Broadbent and Mena. Later calculations by Townsend (1980, 1984) using 2- and 4-
constant Oldroyd fluid models supported these conclusions and found that at
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Viscoelastic wake instabilities 271

moderate De, elasticity and shear-thinning effects caused a small downstream shift
of the streamlines. The calculations of drag coefficient also agreed qualitatively with
the earlier results of Pilate and Crochet.

Chilcott & Rallison (1988) performed time-dependent numerical calculations for
unbounded creeping flow of a viscoelastic polymer solution past cylinders, cylindrical
bubbles and spheres. The constitutive equation they used was based on a kinetic
theory model for a dilute solution of macromolecules identified as non-interacting
dumb-bells with finite extensibility. The numerical procedure allowed for the
development of two-dimensional asymmetric or time-dependent solutions. However,
for the range of parameters covered, no instabilities were encountered, and steady-
state, symmetric solutions were obtained for all Deborah numbers up to De = 16.
The calculations predicted high polymeric stresses, corresponding to large molecular
extensions, that developed in three distinct regions: near the forward stagnation
point; in the regions of high shear rate on either side of the cylinder, and in the long
narrow wake downstream of the rear stagnation point. In this wake or ‘birefringent
tail’ the highly extended dumb-bells are advected large distances downstream before
relaxing fully. The development of very large extensional stresses in the wake of
circular cylinders is supported by experimental measurements of intense flow-
induced birefringence for both polymer solutions (Cressely & Hocquart 1980) and
polymer melts (Mead 1987). The numerical results of Chilcott and Rallison again
showed a small decrease in Cp, for De < 1, followed by an increase above the
newtonian value that asymptotically approached a constant plateau for De < 1. The
use of a constitutive equation with a molecular interpretation in these calculations
also demonstrated that, in addition to the relaxation time of the fluid, knowledge of
the polymer chain extensibility is important in understanding viscoelastic flow near
the cylinder. By varying the ratio of the fully extended to equilibrium length of the
dumb-bell, and thus the degree of thickening in the extensional viscosity of the fluid,
Chilcott and Rallison found they could alter the position of the asymptotic plateau
in O}, to be either above or below the newtonian result. For highly extensible polymer
molecules or for shear-thinning solutions the possibility of a ‘negative wake’ or
velocity overshoot also was indicated.

Numerical simulations of the constraining effect caused by the proximity of
channel walls have recently been performed by Carew & Townsend (1991). Once
again the results indicated that both elasticity and shear-thinning effects caused a
reduction in the drag coefficient but little change relative to the streamlines observed
for creeping flow of a newtonian fluid. These authors also performed calculations for
eccentric placements of the cylinder and were able to reproduce qualitatively the
experimental findings of Dhahir and Walters indicating a normal or lift force on the
cylinder directed towards the nearest wall.

The first detailed study of inertial effects in non-newtonian flow past cylinders was
carried out by James & Acosta (1970). Heat transfer coefficients and drag coefficients
of dilute polymer solutions were measured with extremely small cylinders
constructed from standard hot wire anemometers over a range of Reynolds number
1 < Re < 100. At a fixed Reynolds number, increasing the polymer concentration,
and thus the fluid elasticity, reduced the heat transfer by up to 70 % and increased
the drag coefficient by a factor of three from the values obtained for newtonian fluids.
Furthermore, the heat transfer from the cylinder became essentially independent of
Re beyond a critical Reynolds number.

Visualization of the flow by James and Acosta, coupled with later Lbv
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measurements performed by Konuita et af. (1980) under similar conditions have
shown that viscoelasticity results in a much broader and slower moving wake
downstream of the cylinder and the development of a layer around the cylinder
within which the fluid velocity is very low. It is the formation of this stagnant region
and the increase in the effective size of the wake disturbance that results in the
anomalous drag increase and reduction in heat transfer from the wire. Qualitative
simulations of this phenomenon were discussed by Mizushina et al. (1975) and
Townsend (1984), and very recently quantitative predictions of the changes in both
the heat transfer coefficient and drag coefficient have been given by Hu & Joseph
(1990) and Delvaux & Crochet (1990). Both of these latter numerical studies
considered high Reynolds number flows of fluids modelled by the vcm constitutive
equation and showed that the anomalous experimental correlations of transport
properties corresponded directly to a change of type in the governing equations, as
was first discussed by Ultmann & Denn. For flows with velocities greater than the
shear-wave speed of the ucm model the calculations predicted large increases in the
drag coefficient and corresponding decreases in the heat transfer coefficient, as
observed by James & Acosta; plots of the flow streamlines for Be De > 1 also reveal
the development of a large region of slowly moving fluid near the cylinder, as seen
in the experiments of Koniuta ef al. (1980).

It therefore appears that the steady flow of viscoelastic fluids past cylinders is now
well understood. At low Reynolds numbers the onset of elastic effects result in a small
O(De) downstream shift and a quadratic reduction in the drag coefficient, whereas
at higher values of De fluid elasticity leads to a drag increase and, at least in the
unbounded case, an upstream shift in the streamlines. As inertial effects become
important in the fluid, the wake behind the cylinder becomes broader and a large
region of slow moving fluid develops around the cylinder. Much less is known,
however, about the stability of such flows. Several experimental studies with dilute
polymer solutions have shown that the presence of trace amounts of polymers can
delay the formation of the unsteady von Kdrman vortex street that is observed in
newtonian fluids beyond a critical value of the Reynolds number, and also
significantly reduce the Strouhal frequency of vortex shedding (Usui ef al. 1980 ; Kim
& Telionis 1989). Similar viscoelastic restabilization of inertially driven instabilities
is observed in other laboratory systems such as Taylor—Couette flow (Larson 1989;
1992). However, as discussed in the recent review by Larson, complex flows of highly
elastic fluids may admit entirely new modes of instability with completely different
spatial and temporal characteristics at moderate Deborah numbers and vanishingly
small Re. To date, no experimental evidence has been presented for such instabilities
in the wake of a circular cylinder. The early numerical studies discussed above were
unable to obtain convergent steady-state solution fields for flow past a cylinder at
moderate values of De & 1; however, this is due to difficulties associated with the
numerical formulation of the problem, the so-called high Deborah number problem
(cf. Keunings 1987; Crochet 1989), rather than to the onset of physically unsteady
phenomena. The recent work of Chilcott & Rallison (1988) allowed for the possibility
of asymmetric, or time-dependent two-dimensional solution fields; however, for the
range of model parameters considered, symmetric steady-state solutions were
obtained up to a De = 16. The appearance of three-dimensional instabilities has not
been considered.

In this work we demonstrate that in highly elastic fluids a bifurcation from steady,
two-dimensional, creeping flow to a new steady, three-dimensional motion occurs in
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the cylinder wake at moderate values of the Deborah number and very small
Reynolds numbers. A video-based flow visualization system is used to reveal the
formation of a regularly spaced cellular structure in the wake of the cylinder, and
three-colour LDV measurements are employed to determine quantitatively the three-
dimensional velocity field. As the Deborah number is increased further, a second
transition to a three-dimensional, time-dependent flow is documented corresponding
to a translating cellular structure. The rheological properties of the viscoelastic fluid
and the design of the experimental system used in this investigation are reviewed in
§2. Both experimental and numerical studies of the evolution of the two-dimensional
velocity field as De is increased are presented in §3; detailed experimental
measurements of the spatial and temporal structure of the velocity field near the
cylinder following the onset of three-dimensional flow follows in §4. The influence of
varying the ratio of the cylinder radius to channel half-width £ is discussed in this
section. The connection of this work to experimental observations of other purely
elastic flow instabilities in complex flow geometries is addressed in §5.

2. Experimental method
(@) Flow geometry

The flow geometry used in these experiments is shown schematically in figure 1. A
cartesian coordinate system {x,y,z} is defined with the origin at the centre of the
cylinder, the z-axis aligned along the flow direction, the y-axis in the ‘transverse’
direction and the x-axis pointing in the ‘neutral’ direction along the cylinders axis
of symmetry. The characteristic length scale is taken as the cylinder radius R, and
non-dimensional coordinates are defined as £=x/R, v=y/R, {=2z/R. Design
specifications for the plexiglass test cell are discussed elsewhere (McKinley 1991), and
the final internal dimensions of the rectangular channel are: length Az = 279.0 mm,
height Ay = 2H = 12.66 mm, and width Az = 76.10 mm. The cylinder is mounted
half-way along the length of the channel, and the large entrance and exit lengths (ca.
22H) ensure that the flow is fully developed as it approaches the cylinder. The aspect
ratio of the channel cross-section is given by Ax/Ay = 6.0, which is designed to be as
large as possible (within the constraint of maximum pump capacity) to minimize
edge effects and ensure that the flow approaching the cylinder is approximately two-
dimensional.

The circular cylinder itself consists of a single polished plexiglass rod that is held
rigidly in place along the centreline of the channel by recessed holes in the side-walls
of the flow cell. It is well-known that viscoelasticity tends to amplify slight
asymmetries in this flow geometry (Cochrane et al. 1981; Walters 1985), and great
care was taken to ensure that the mounting holes were centred to tolerances within
8y = +0.025 mm (ca. 0.001 inch). The dimensionless eccentricity associated with the
cylinder mountings is therefore ¢ = 8y/H < 4 x 107%. Because the viscoelastic test
fluid used in this study is matched to have a refractive index very close to that of
plexiglass, it is possible to transmit the focused laser beams of the LDV system
through the front face of the flow cell and directly through the transparent cylinder
without significant distortion. Velocity measurements were possible on both sides of
the cylinder using this method.

The majority of the results presented here are for flow past a cylinder of radius
R = 3.188 mm, such that the ratio of cylinder diameter to channel height is nom-
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inally #=0.5. A cylinder-channel ratio of f#=0.5 was originally proposed as
an international benchmark for numerical simulations of viscoelastic flow in this
geometry and the related axisymmetric problem of a sphere in a cylindrical tube
(Hassager 1988); however, it has been suggested recently that smaller ratios should
be considered in order to separate the competing influences of the constraining walls
and the extensional flow near the stagnation point (Walters & Tanner 1992). The
side-walls of the test cell used in these experiments can easily be removed to allow
substitution of another cylinder with a different diameter. It is thus possible to
explore the effect of varying # on the flow near the cylinder, and four different
cylindrical rods with nominal ratios of # =1, 1 1 and } have been used in this work.
The diameters of the cylinders were carefully determined with a digital micrometer
at several positions along their lengths, and the actual cylinder—channel ratios are
£ =10.503%£0.001, # = 0.337+0.001, £ =0.2574+0.002, and g = 0.170+0.003.

(b) Laser Doppler velocimetry

The LDV apparatus used in this research is a three-colour, six-beam system (TSI,
Model 9100-12) that has been described in detail before (McKinley et al. 1992). The
technique permits simultaneous non-invasive measurements of all three velocity
components at a single point in the fluid where the six beams of laser light intersect.
The spatial dimensions of this measuring volume are determined by the apertures
and focal lengths of the focusing lenses and by the intersection angle and initial
diameter of the laser beams. In the current configuration the measuring volume is
ellipsoidal with dimensions of approximately 50 pm x 50 pm x 400 um. The Doppler-
shifted light that is scattered by particles in the flow is measured by three
photomultipliers that are aligned in an off-axis, side-scatter configuration. The
analogue voltage output from the photomultipliers is directed to three independent
frequency trackers (DISA, Model 55N20/21) and a dual channel Spectrum Analyzer
(Nicolet, Model 660B) to determine the Doppler frequency measured by each beam-
pair. The digital output from each of these devices can be captured in the computer
via standard RS232 and IEEE-488 interfaces respectively and steady and time-
dependent velocity measurements in the range 0.1 < » < 100 ¢cm 57! can be measured
with accuracies of +1%. Acousto-optical Bragg cells are used to remove the
directional ambiguities of the Doppler technique and permit the detection of any
regions of reversing flow that may develop. The entire optical train is mounted on a
computer-controlled, three-dimensional translating table (TSI, Model 9500) which
enables point velocity measurements to be made throughout the flow geometry. In
typical Lov applications involving air or water as test fluids it is common to add
micrometre-sized seed particles as scattering sites; however, preliminary tests in the
highly viscous polymeric liquids used in this work showed that no seeding is
necessary because sufficient scattering particles are naturally suspended in the fluid.

In addition to point-wise measurements of the velocity field, the macroscopic
characteristics of the flow are visualized using a ccp video-imaging system. A beam
of laser light is passed through a cylindrical lens to form a narrow sheet of light as
described by Cochrane et al. (1981), and this light sheet can then be used to illuminate
various cross-sections of the plexiglass flow cell. Flow magnification factors in the
range 7 to 30 are achieved by using a 35 mm macro lens and bellows rings assembly.
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(¢} Test fluid rheology and dimensionless flow parameters

The viscoelastic test fluid used in this study is a highly elastic ‘Boger fluid’ (Boger
1977) composed of 0.31% (by mass) polyisobutylene (PIB) dissolved in a viscous
newtonian solvent of 94.86% (by mass) polybutene (PB) and 4.83% (by mass)
tetradecane (C14). The test cell described in §2a is connected to a large flow loop
containing approximately 60 gallons of the test liquid which is circulated by a
variable-speed Moyno progressing-cavity pump.

The rheological properties of the fluid have been thoroughly characterized in
dynamic, steady and transient shear flows over a range of temperatures (Quinzani
et al. 1990). Master curves of the steady shear-flow material functions at a reference
temperature of 7, = 25 °C are shown in figure 2. The fluid has a zero-shear-rate
viscosity 7, = 13.76 Pa s and the viscosity remains almost constant over four
decades of shear rate. Separate rheological measurements on the PB/C14 solvent
show that it can be considered as a newtonian solvent with a constant viscosity of
7s = 8.12 Pa 8. The first normal stress coefficient ¥, is constant at low shear rates,
with a zero shear-rate value of ¥, ,=8.96 Pa s2 but exhibits complex shear-
thinning behaviour at higher shear rates. Although no direct measurements of the
second normal stress coefficient for this fluid have been made, recent studies on other
PIB Boger fluids have shown that ¥, ~ 0 (Magda et al. 1991).

To obtain accurate estimates of the importance of elastic effects in the flow it is
necessary to define an appropriate relaxation time for the fluid. In this work we
define a shear-rate-dependent relaxation time in terms of the viscometric properties
measured in steady shear flow as A(y) = ¥,(y)/29(y). In the limit of zero shear-rate
this definition yields a maxwellian relaxation time of A, = 0.324 s, and also takes into
account the gradual decrease in the first normal stress coefficient that is observed at
moderate shear-rates for all Boger fluids. The volumetric flow rate () through the
geometry is used to define an average velocity in the channel as {(v,) = Q/AzAy =
Q/24H?, and a characteristic residence time for polymer molecules flowing near the
cylinder is 7 = R/{v,>. The Reynolds number and the Deborah number for this
problem are then defined respectively by

De = A(7) <n,>/R (1)
and Re = 2pC0,) R/y(9). )

In equation (2) we have indicated that, for polymeric fluids in general, the
viscosity may also be a shear-rate-dependent quantity ; however, for the Boger fluid
used here 7 remains essentially constant at the zero-shear-rate value given above.
Many other workers report Deborah numbers based on the constant relaxation time
obtained from zero-shear-rate viscometric properties. Therefore, we also report these
values in the tables of critical conditions below; however, as we discuss in §3, in
general the zero-shear-rate Deborah number, De, = A, 7y, significantly over-predicts
the magnitude of elastic effects in a Boger fluid.

(d) Constitutive model

Quinzani ef al. (1990) showed that simple quasilinear models, such as the Oldroyd-
B fluid model (Oldroyd 1950), are insufficient to describe the deformation-rate-
dependent rheological properties of the PIB test fluid, and it is necessary to use both
a spectrum of relaxation times and nonlinear constitutive equations. Numerical
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Figure 2. Master curves for the viscometric properties of the 0.31 % (by mass) PIB/PB/C14 Boger
fluid at 7}, = 25 °C: (@) shear viscosity 7 (Pa s) and () first normal stress coefficient ¥, (Pa s?). Also

shown by the solid lines are the predictions of the Chilcott—Rallison model (equation (3)) with ¢ =
0.695 and L = 12. 7, = 13.76 Pa’s, 7, = 8.12 Pa s, ¥,, = 8.96 Pa <.

simulations with such multimode models are just beginning (cf. Rajagopalan et al.
1992); however, the calculations are currently very expensive. To decrease the size
of the equation set, but retain at least a semiquantitative description of the shear-
rate dependence in the first normal stress coefficient that is observed in Boger fluids,
we have used the single-mode nonlinear constitituve equation introduced by Chilcott
& Rallison (1988). The PIB macromolecules are considered as a dilute solution of
non-interacting dumb-bells with dimensionless concentration ¢, dissolved in a
newtonian solvent of viscosity 5. The two beads of the dumb-bell are connected by
a nonlinear elastic spring with a finite maximum extensibility L, which represents the
ratio of the fully extended length of the dumbbell to the rRMs length at equilibrium.
A constitutive equation for the polymeric contribution to the fluid stress z, is
obtained by eliminating the dyadic product of the end-to-end vector from the
original equations of Chilcott and Rallison to obtain (in the notation of Quinzani
et al.) the following expression

DinZ )
/\1 To) +tp [Z_’\l —Dt_—] =" Zy’ (3)
where Z = (L*—(1/nkT)trz,)/(L*—3)

and tr 7, is the trace of the stress tensor, A, is a time constant for the model, 7" is the
temperature and » is the number density of dumb-bells in solution. It can be shown
that the polymeric contribution to the viscosity is #, = nkTA,. The solvent is
newtonian with 7, =—v,y and the total stress tensor for the fluid is given by
summing the separate contributions from the solvent and polymer as 7 = 7, +1,,.
In the limit L — oo, the dumb-bells become infinitely extensible and equation (3)
simplifies to the upper-convected Maxwell model; the constitutive equation for the
total stress tensor 7 is then equivalent to the Oldroyd-B model (Bird et al. 19875).
Chilcott & Rallison provide analytic expressions for the material functions obtained
from (3) for finite L and show that the model correctly mimics numerous aspects of
Boger fluid rheology including a constant viscosity, a shear-rate-dependent first
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normal stress coefficient and a zero second normal stress coefficient. The results of
fitting the three Chilcott—Rallison model parameters 7, ¢, and L to the viscometric
data for the 0.31% (by mass) PIB Boger fluid are shown in figure 2. The
dimensionless concentration is found from the zero-shear-rate viscosity 7, = 7+,
= ys(1+c¢) as ¢ = 0.69; for moderate or large values of L, the time constant A,
is determined directly from the zero-shear-rate material properties as A, =
¥,.0/2(ny—7s) = 0.794 s. The single remaining model parameter L is then determined
by fitting the shear-rate-dependent form of the first normal stress coefficient. For this
0.31% (by mass) PIB Boger fluid we find that the asymptotic form of ¥,(y) at high
shear-rates is best modelled by a relatively low value of the extensibility, L = 12.
Chilcott and Rallison suggest typical parameter ranges for Boger fluids of 0.3 < ¢ <
0.7 and 3 < L < 20, in good agreement with our findings. By using the definition in
(1), the shear-rate-dependent Deborah number for the Chilcott—Rallison model is

given as
1L e [ 8(L2—3) (A, 7)?
2e) = gt -+ [+ @

where the magnitude of the deformation rate is y = {v,)>/R.

In addition to capturing the shear-thinning behaviour in ¥,(y), the Chilcott—
Rallison model predicts a large but bounded extensional viscosity 7 in steady
extensional flows and removes the singular behaviour encountered at critical
extension rates with quasilinear constitutive equations, suh as the Oldroyd-B model
(Bird et al. 1987 a). This is important in numerical simulations of viscoelastic flow
past cylinders and spheres since fluid near the stagnation points experiences strong
extensional deformations. The model parameters determined in (3) predict a
maximum planar extensional viscosity of 7; = 1207, at large extension rates.

Finally it should be noted that although the model of Chilcott and Rallison
incorporates many aspects of Boger fluid rheology, it only contains a single time
constant for the fluid. In the limit of infinitesimal deformation rates the constitutive
equation reduces to the linear viscoelastic Jeffreys model, and thus cannot
accurately describe the gradual frequency dependence of the linear viscoelastic
material functions (', %”) that is observed in Boger fluids. It has also been shown that
a quantitative description of the intermediate plateau behaviour in the experimental
measurements of the first normal stress coefficient ¥,(y) can be achieved through the
incorporation of multiple relaxation modes (Quinzani et al. 1990).

3. Steady viscoelastic flow past a cylinder

We present in this section the results of experimental measurements and numerical
simulations that document the evolution of the steady, two-dimensional velocity
field near the circular cylinder as the volumetric flow rate, and thus De(y) are slowly
increased.

(@) Newtonian flow past a confined cylinder, De < 1

Far upstream and downstream of the cylinder, the fluid motion in the rectangular
slit should be a fully developed rectilinear shear flow. In particular, for the creeping
motion of a constant-viscosity Boger fluid in an infinitely wide channel we expect a
plane Poiseuille flow with a parabolic profile and a maximum velocity on the
centreline of v, = ¥v,>. However, the velocity must also vary in the ‘neutral’ x-
direction, because of the finite extent of the experimental apparatus and the no-slip
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Figure 3. Profiles of the axial velocity component in a rectangular channel with aspect ratio 6:1.
(a) Parabolic dimensionless velocity profile v,(y)/{v,) in transverse direction, and (b) flat velocity
profile v,(x)/<v,) across width of channel. The solid lines are calculated with an analytical, infinite-
series solution to the equations of motion. De = 0.7, Re = 0.0057, (v, {) = (0, —10).

boundary conditions at the end-walls. Significant three-dimensional effects have
been observed in earlier flow visualization experiments of viscoelastic flow past
cylinders in ducts with almost square cross-sections (Dhahir & Walters 1989;
Georgiou et al. 1991). We have aimed to minimize these edge effects by designing the
test cell with a higher aspect ratio of Ax/Ay = 6.0. Profiles of the normalized axial
velocity v,(& v)/<{v,> in the rectangular channel are shown in figure 3 at a
dimensionless position of { = —10, i.e. ten cylinder radii upstream of the cylinders
midpoint. The velocity in the transverse y-direction is shown in figure 3a and has the
characteristic parabolic profile with a maximum value of v,/<{v,) ~ 1.5 at v = 0. The
axial velocity across the width of the channel is shown in figure 3b and rises very
rapidly from zero at either end-wall to an approximately constant profile across the
central two-thirds of the channel for dimensionless x positions, —8 < § < 8. Also
shown in figure 3 are dimensionless velocity profiles calculated with an infinite-series
solution of the Stokes equations for creeping flow of a newtonian fluid in a
rectangular channel. The agreement is excellent between the LDV measurements and
the analytic solution. The average velocity at these flow conditions is {v,) =
1.47 mm s7!, and the small fluctuations observed in the experimental data points
shown in figure 3b indicate the magnitude of the minimum resolvable velocity
difference (40.04 mm s™1) that can be detected with the Lpv system.

The evolution of the velocity field around the cylinder at low De is summarized in
figure 4. The velocity profile is parabolic far upstream ({ = —10), and flattens as the
fluid approaches the cylinder ({ = —3). Off-centre maxima develop at { = —2, and
the velocity attains a maximum value on the symmetry plane, { = 0. At this point
the velocity profile on each side of the cylinder is again parabolic, as expected for
such an inertialess flow, with a maximum velocity of »,/{v,) = 3.0 at the points
v = +1.5. The velocity profiles are symmetric downstream of the cylinder, and the
flow rapidly returns to the parabolic profile within a distance of five cylinder radii
from the rear stagnation point.

LoV measurements of the axial velocity in the planar stagnation flow near the
cylinder are presented in figure 5. Far upstream and downstream of the cylinder the
normalized velocity along the channel centreplane (§,v) = (0,0) has a maximum
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Figure 4. Transverse velocity profiles of the dimensionless axial velocity v,/{v,) showing evolution
of the velocity field for the creeping flow of the Boger fluid past a circular cylinder at flow
conditions of De = 0.07 and Re = 0.0003.

value of v,/{(v,) = 1.5. As the fluid approaches the cylinder the velocity decreases
very rapidly; figure 5 shows that the influence of the cylinder only extends a distance
of about four cylinder radii from the upstream and downstream of the stagnation
points S; and S, located at { = +1.

Nuinerical solutions for the two-dimensional, inertialess flow of a viscoelastic fluid
past a cylinder in a planar channel with # = 0.5 have been obtained using the finite
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Figure 5. Centreline axial velocity in the planar stagnation flow near the cylinder at De = 0.07: (o)
LDV measurements in flow geometry with R = 6.37 mm, and 10:1 aspect ratio; (0) LDV
measurements in flow geometry with R = 3.188 mm and 6:1 aspect ratio. ( ) Two-dimensional
finite element solution for f = 0.5; (———) Lamb—Oseen solution for slow flow past an unbounded
cylinder. (§,v) = (0,0).

element code developed by Lunsmann (1992). The numerical formulation employed
in this work has been shown to be convergent with mesh refinement for the Oldroyd-
B and Chilcott—Rallison models (Lunsmann et al. 1993), and has been employed to
provide benchmark solutions for studies of the equivalent axisymmetric problem of
a sphere falling in a tube (Walters & Tanner 1992). The centreline velocity profiles
obtained numerically at De = 0, and Re = 0 are shown in figure 5 by the solid lines.
The agreement between the numerical computations and the LDV measurements is
extremely good in both the upstream and downstream stagnation flow. The inset
figure shows an expanded view of the velocity profile near the upstream stagnation
point with LDV measurements obtained at equally spaced intervals of 160 um
(0.05R). The maximum discrepancy shown in figure 5 is approximately 7% and
occurs in the downstream wake of the cylinder at distances of 3.0 < { < 4.0. The
reproducibility of this effect was investigated with LDV measurements that were
performed at the same De in two separate flow geometries; one with a cylinder radius
R =3.188 mm and a 6:1 cross-sectional aspect ratio (depicted by the solid symbols
in figure 5) and a second test cell with a cylinder radius of R = 6.370 mm and an
aspect ratio of 10:1 (hollow symbols in figure 5). The two data sets are self-consistent
and both show the same, small 7% deviation from the numerical calculations. The
origin of this discrepancy is unclear, but it seems unlikely to be due to the finite cross-
sectional area of the experimental geometry or to be an inertial effect for the very
small values of Be < 0.001 attained in the experiments. The data in figure 5 do show
a slight asymmetry which should not be present for the creeping flow of a fluid past
a cylinder at zero Deborah number, and it thus appears that the small, but finite
elasticity present in the experimental fluid contributes to this small effect. The
theoretical studies discussed in §1 suggest that elasticity results in an O(De)
downstream shift in the streamlines (Mena & Caswell 1974), and subsequent
numerical calculations with the Oldroyd-B model at De = 0.1 also show a very small
downstream displacement of about 2% in the centreline velocity profile. However,
this shift is insufficient to describe quantitatively the experimental data shown in
figure 5. It seems most probable that the small discrepancy arises from viscoelastic
behaviour not modelled by the single mode constitutive models; examples may be
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Figure 6. Evolution of the axial velocity profiles v,/{v,) along the channel centreplane (y = 0) with
increasing De: (a) upstream of the cylinder; and (b) in downstream wake of the cylinder. (§,v) =
(0,0). In (a) De = 0.074 (o), 0.41 () and 0.85 (a). In (b) De = 0.074 (@), 0.19 (O), 0.35 (), 0.52 ()
and 0.69 (a).

the complex shear-thinning observed in ¥,(y) or the spectrum of relaxation times
present in this Boger fluid (Quinzani ef al. 1990).

The constraining effect of the channel walls is emphasized by the broken curve in
figure 5 that shows the normalized velocity profile calculated from the Lamb—Oseen
solution for the slow flow of a newtonian fluid past a circular cylinder. In an
unbounded fluid, reductions in the free stream velocity occur out to distances
¢ ~ 1/Re; however, the presence of channel walls deter the fluid from being forced
radially outwards by the cylinder and result in a much more rapid decrease in the
velocity near the stagnation point. Consequently much larger extension rates are
observed experimentally and calculated numerically near the stagnation points in
the confined geometry.

(b) Elffects of elasticity on the velocity field, De ~ 1

As the Deborah number of the flow past the cylinder is increased, elastic effects
result in a progressive modification to the velocity field around the cylinder. Profiles
of the normalized axial velocity along the centreplane in the front and rear
stagnation flows near the cylinder are shown in figure 6 to demonstrate this effect.
In the steady shearing flow upstream of the cylinder, the polymer molecules near the
centreplane are in an unextended, relaxed configuration for all Deborah numbers
(since the shear rate along the centreplane is zero); and the velocity profiles near the
upstream stagnation point at { = —1 superpose when scaled with the average
velocity (v,) and the cylinder radius R. However, as De is increased, the
macromolecules moving very close to the cylinder experience progressively stronger
deformation rates which lead to the development of large molecular extensions and
high elongational stresses. This deformation is ‘remembered’ by the fluid, and the
configuration of the molecules as they enter the downstream stagnation flow changes
with increasing De. The LDV measurements show that very close to the downstream
stagnation point (¢ < 1.5) the velocity profiles superpose, but that as the extension
rate and Deborah number increases the velocity of the fluid moving away from the
cylinder recovers more slowly to its ultimate value of v,/{v,» = 1.5. These velocity
measurements together with other similar LDV profiles measured away from the
centreplane (not shown here) indicate clearly that the cylinder wake is extended
downstream with increasing De, equivalent to a downstream shift of the streamlines
around the cylinder.
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Figure 7. Numerical solutions of the normalized axial velocity profiles v,/{v,) along the centreline
of the channel for Deborah numbers of De, = 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1. Chilcott—Rallison
model, ¢ = 0.6946, L = 12.

Numerical calculations of the variation in the normalized centreplane velocity
profile with increasing Deborah number are presented in figure 7 for the
Chilcott—Rallison model with L = 12. The numerical calculations provide an
excellent representation of the changes in the velocity field documented with the Lpv
system. Upstream of the cylinder the centreline velocity profiles appear to superpose
with increasing De, but closer examination of the numerical results shown in the inset
indicates a very small upstream shift in the velocity of less than 1%, which is within
the limits of accuracy associated with the LDV system. Downstream of the cylinder,
however, the finite element simulations show a more complex behaviour. Very close
to the cylinder ({ < 1.5) the profiles show a small steepening of the velocity gradients
with increasing De, followed by a much larger downstream shift in the velocity for
{> 1.5, in qualitative agreement with the experimental measurements shown in
figure 6b.

Despite this close similarity between the experimental measurements and
calculations, it is important to note the current limitations of such finite element
simulations. The results in figure 7 are calculated by progressively incrementing the
visoelastic parameter, De, = A,;{v,»/R, since this is the dimensionless group that
naturally arises during non-dimensionalization of the governing equations (cf. Bird
et al. 1987a). This ‘zero-shear-rate Deborah number’ is related to our shear-rate-
dependent Deborah number De through equation (4), and the numerical results in
figure 7 correspond to a maximum value of De; = 2.70, or De = 0.80. Any further
increases in De, lead to loss of numerical convergence unless a finer finite element
mesh is used, as discussed by Lunsmann et al. (1993).

Numerical solutions of the velocity and stress fields of the Chilcott—Rallison model
at De; = 2.70 are shown in figures 8 and 9 respectively for a finite-element mesh
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containing 34908 degrees of freedom (designated mesh M3 in the work of Lunsmann
et al.). The direction of flow in each figure is from left to right and equally spaced
contours are plotted between the minimum and maximum values of each variable
across the full computational domain which extends from —12 <{<18. The
normalized velocity fields and the streamfunction y shown in figure 8 indicate the
loss of symmetry near the fore and aft stagnation point and the downstream shift in

Phil. Trans. R. Soc. Lond. A (1993)

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

284 G. H. McKinley, R. C. Armstrong and R. A. Brown

the streamlines. The steep velocity gradients observed in figure 8 result in the
development of large elastic stresses in the flow that are shown in figure 9. In
particular, large negative (or tensile) axial stresses 7,, develop in two separate regions
of the flow: within the strong shearing flow in the narrow gap between the cylinder
and the channel walls, and in the strong extensional flow along the centreplane in the
wake of the cylinder. The close spacing of the contours for all three stress components
shown in figure 9 indicates the formation of very steep stress boundary layers near
the cylinder. The slender sheet of highly elongated molecules along the channel
centreplane gives rise to large tensile stresses due to the pronounced extensional-
thickening in the planar elongational viscosity predicted by the Chilcott—Rallison
model for L, = 12. The failure to resolve the evolution of this structure is believed to
cause the loss of numerical solution beyond a critical Deborah number (Lunsmann
et al. 1993). The computations can be extended to slightly higher De,; by refining the
mesh still further; however, the calculations become prohibitively expensive and a
boundary layer analysis such as that developed by Harlen (1990) for the flow around
a sphere in a channel may be more appropriate. Alternatively, Lunsmann ef al. show
that by reducing the extensibility of the molecules to L = 5, and thereby reducing
the degree of extensional-thickening in the cylinder wake, the computations can be
continued with a fixed finite element grid without an apparent upper limit in De,.

Substituting the maximum value of the zero-shear-rate Deborah number for which
finite element solutions were attained into equation (4) corresponds to a shear-rate-
dependent Deborah number of only De = 0.80. It has not been possible to continue
even qualitative comparisons of the steady, two-dimensional LDV measurements
beyond this point, even though the experimental data show that viscoelastic flow past
the cylinder remains two-dimensional up to a Deborah number of De &~ 1.3, which
corresponds to De; =~ 3.8.

4. The elastic wake instability, De > 1

LDV measurements have been used to document the spatial and temporal
characteristics of a purely elastic flow instability that develops in the downstream
wake of the cylinder beyond a critical Deborah number. We first present detailed
results for the flow geometry with a cylinder to channel ratio of # = 0.5 and then
examine the variations in the structure of the instability that result from decreasing
the cylinder radius and thus reducing the ratio f.

(@) The onset of steady, three-dimensional flow, £ = 0.50

Further increases in the Deborah number beyond De = 0.69 result in progressively
larger downstream shifts in the velocity profiles until the onset of a flow instability
occurs at De = 1.30. This instability results in a transition from a steady, two-
dimensional planar extensional flow in the wake of the cylinder to a steady, but
three-dimensional cellular structure which extends along the length of the cylinder.
A series of axial velocity profiles in the cylinder wake is presented in figure 10 as the
flow rate through the channel is slowly increased. These profiles are measured in the
‘neutral’ z-direction along the channel symmetry plane very close to the cylinder at
(v, §) = (0,1.5), where the velocity is approximately 26 % of its value far downstream ;
see figure 6. At low flow rates, the LDV velocity measurements in the wake of the
cylinder are flat across the central section of the channel, as expected for a steady,
planar stagnation flow. However, as De is increased, spatially periodic oscillations
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Figure 10. Profiles of the axial velocity v,(z) across the width of the channel at (v,{) = (0, 1.5)
as the Deborah number is increased from De = 0.70 to De = 1.83.

appear in the velocity profiles; the measurements presented in figure 10 at De = 1.38
and 1.83 show the large spatial fluctuations in the axial velocity that extend in the
neutral z-direction along the length of the cylinder.

It is important to note here how these LDV data are collected and how they differ
from the data presented in earlier figures. To generate these profiles, the measuring
volume is positioned at a point z; and the computer program controlling the stepper
motors then translates the optical table at a fixed velocity, u, = 1.00 mm s7%, to a
new point z,. The instantaneous Doppler frequency measured in the flow is followed
in real time by a phase-locked loop in the frequency trackers and after A/D
conversion is stored on computer as a file of 1024 evenly spaced data points. The
time-dependent signal response is then converted to a spatial velocity profile by a
simple mapping as v,(x) = v,(x, +u,¢). Since the six LDV beams are not mutually
orthogonal and intersect the flow cell at an oblique angle it is not possible to follow
the velocity profiles directly to the end walls (located at x = £38.1 mm); however,
the measurements presented in figure 10 and subsequent figures contain velocity
measurements across the central 80% of the channel from —30.5mm <z <
+30.5 mm. In conventional LDV operation, the accuracy of velocity measurements
is improved by holding the measuring volume at a fixed point and averaging a large
number of discrete Doppler bursts. When the probe volume is translated through
space, however, the accuracy is limited by the instantaneous local data rate, which
is typically only 50 Doppler bursts per second for slow polymer flows. The rapid
small-amplitude fluctuations in the steady planar velocity profile at De = 0.70
indicate the maximum level of accuracy (approximately +3%) that can be achieved
with the system in this ‘instant-acquisition mode’.

The critical Deborah number for the onset of the wake instability was determined
by performing a series of velocity scans along the cylinder length as the flow rate was
gradually increased. The minimum and maximum amplitudes of the axial velocity
measured at a constant axial position of { = 1.50 and averaged over the length of the
cylinder are shown in figure 11 as a function of De. At low flow rates the axial velocity
is constant across the cylinder and increases approximately linearly with De, as
shown by the hollow symbols in figure 11. This is in agreement with the results
previously presented in figure 6 which show that the normalized velocity at £ = 1.50
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Figure 11. Magnitude of the axial velocity v, measured in the wake of the cylinder as a function of
the Deborah number; hollow symbols (o) indicate the average value of the flat velocity profile in
two-dimensional planar stagnation flow; solid symbols indicate the maximum (a) and minimum
(@) values of the velocity fluctuations measured in the cellular wake structure. (£,v,¢) = 0,0, 1.5).

is almost independent of De. However, at a critical value De, = 1.30 +0.01, spatially
periodic oscillations appear in the velocity profiles near the cylinder. The maximum
and minimum values of the axial velocity are shown in figure 11 by the solid symbols,
and the amplitudes of the fluctuations increase as the Deborah number is increased.

The fluctuations in the axial velocity profiles shown in figure 10 indicate the spatial
wavelength of the disturbance, which is quantitatively determined by Fourier
analysis of the profile v,(x). A sample velocity profile measured in the cylinder wake
at § = 1.75 is shown in figure 12a. A fast Fourier transform (¥¥r) of this signal results
in a series of points that are equally spaced in wavenumber or ‘spatial frequency’
fo (mm™). Inversion of these wavenumber values leads to a power spectrum
describing the spectral contributions of oscillations with a spatial wavelength of
Ay (mm). The maximum wavenumber is determined by the Nyquist sampling
theorem to be f, ... = 8.39 mm™" and the ‘bin size’ or resolution of the spectrum is
determined from the magnitude of the domain as &f, = +0.016 mm™. The
characteristic wavelength of the velocity fluctuations determined from the ¥rr
spectrum presented in figure 126 is A, = 3.03+0.15 mm. The wavelength of the dis-
turbances is therefore almost equal to the radius of the cylinder; A, = (0.95+0.05) R.

The LDV system has also been used to investigate the temporal stability of the flow
in the cylinder wake. A sample velocity time-series v,(t) at a fixed spatial position
(€.v,8) = (0,0,1.75) is presented in figure 13 for the same flow conditions as in figure
12. The flow in the cylinder wake consists of oscillations that extend spatially across
the length of the cylinder; however, the velocity measured at any single point re-
mains steady in time, and the Fourier spectrum reveals no dominant frequencies
of oscillations. Similar results were obtained at points throughout the wake and it
is concluded that the elastic instability in the cylinder wake results in the formation
of a steady, but three-dimensional flow field.

The video-imaging system described in §2 was used to show unequivocally that
these spatial fluctuations in the velocity profiles are associated with the development
of an evenly-spaced ‘cellular structure’ in the cylinder wake. A narrow longitudinal
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Figure 12. (a) Spatial fluctuations in the axial velocity v,(x) measured in the downstream wake
of the cylinder at { = 1.75 and flow conditions of De = 1.38 and Re = 0.017; (v,{) = (0,1.75). (b)
The FrT spectrum determines the spatial wavelength of the fluctuations as A, = 3.03 mm +0.15 mm
= 0.95R.

Figure 13. (a) Time-series of the axial velocity v,(f) in the cylinder wake at the same position
and flow conditions as figure 12. (b) The Fourier spectrum reveals no dominant frequencies of
osillation.

(a)

Figure 14. The elastic wake instability at De = 2.48, Re = 0.028. (a) Video-imaging of the flow
shows the formation of a cellular structure in the downstream wake that extends along the length
of the cylinder; (b) higher magnification image close to the downstream stagnation point shows
that the velocity in the cylinder wake is three-dimensional with a v, component parallel to the
cylinder axis.

section of the flow at v = 0 is illuminated with a planar sheet of laser light, and the
video camera is aligned with the y-axis to visualize the flow along the length of the
cylinder (cf. Cochrane et al. 1981). Representative still frames from the videotape are
presented in figure 14. In each image the flow is from the top to bottom and the
cylinder appears horizontally on the page. The low magnification image presented in
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Figure 15. (@) Fluctuations in both velocity components v,(x) and v,(x) across the width of the
channel at (v,§) = (0,1.5) and flow conditions of De = 1.77 and Re = 0.012; (b) the wavelength of
oscillations in the axial velocity is determined from the FFT spectrum as A, = 1.50+0.04 mm; (c)
the wavelength of oscillations in the z-component velocity is A, = 3.03+0.15 mm.

figure 4a demonstrates the presence of a periodically alternating banded structure in
the cylinder wake. Combined LDV measurements and direct visual observation
indicate that the bright areas correspond to the regions of higher axial velocity that
are observed in velocity scans along the length of the cylinder. Figure 14« also clearly
shows that the cellular structure extends across the length of the cylinder but is
confined to the downstream wake ; the flow upstream of the cylinder appears spatially
uniform, and LDV measurements confirm that the velocity profiles here remain two-
dimensional with no spatial fluctuations.

Subsequent flow visualization experiments at higher magnifications show that the
velocity field in the cylinder wake is truly three-dimensional, and that particles very
close to the cylinder move along the x-axis in both directions as they flow into
the faster-moving, brighter regions of the wake. This effect is clearly observed on
the videotape but is more difficult to capture in still images. Figure 145 shows the
velocity field in the cylinder wake at De = 2.48; the particle streak in the upper right
section shows that there is an xz-component of velocity very close to the cylinder.

This complex three-dimensional flow field in the cylinder wake has been carefully
explored using the three-colour LDV system. Figure 15a shows profiles of the v, and
v, components of velocity measured on the channel centreline very close to the
cylinder at {=1.40 and flow conditions of De = 1.77 and Re = 0.012. At these
conditions the flow around the cylinder remains symmetric about the channel
centreplane v = 0, and no y-component of velocity is measured with the LDV system.
The v, velocity along the cylinder axis oscillates about zero with a spatial wavelength
of 0.95R +0.05R, as fluid flows in both directions along the cylinder from the slower
moving regions into each faster moving cell. LDV measurements also show periodic
fluctuations in the axial velocity v, component very close to the cylinder; however,
the wavelength of these oscillations is determined from the rrT in figure 156 to be
A, = 0.47R +0.02R. These measurements show that the axial velocity oscillates with
a frequency of twice that observed in the v, component, and close examination of the
velocity profiles shown in figure 15a reveals that v, displays a minimum value at
each position where the magnitude |v,| reaches a maximum.

Similar measurements further from the cylinder at { = 2.0 are shown in figure 16.
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Tigure 16. (a) Fluctuations in both velocity components v,(x) and v,(x) across the width of the
channel at (v, &) = (0,2.0) and same flow conditions as figure 15. The wavelength of oscillations in
both velocity components is determined from the FFT spectra presented in (b) and (c) as A, =
3.03+0.15 mm.
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Tigure 17. Evolution of the spatial structure observed in the centreline axial velocity v,(£,0,{)
within the downstream wake of the cylinder at De = 1.83 and Re = 0.0158.

Figure 18. Measurements of the axial velocity profiles along the length of the cylinder at different
transverse positions of y/R =0, 0.53, 0.79 and 1.05 show that the three-dimensional cellular
structure is confined to a narrow region of the cylinder wake near the channel centreline.

The v, component of velocity still shows periodic fluctuations about zero; however,
the amplitude of oscillations is greatly reduced and the Frr spectrum shows the
presence of only a weak peak at A, = 0.95R. The axial velocity v, at {= 2.0 also
contains periodic oscillations, though the dominant wavelength of these oscillations
shown in figure 165 has doubled from those measured at { = 1.5 (cf. figure 15b) to
A, = 0.95R.

The progressive evolution of this cellular structure in the downstream wake of the
cylinder is shown in figure 17. Near the stagnation point, at { = 1.5, there is motion
along the length of the cylinder, and the complex three-dimensional flow results in
the rapidly modulated oscillations with wavelengths of A, ~ 0.5R and A, = 0.95R as
discussed above. Further away from the cylinder, at {=2.0 and {= 3.0, the
oscillations in the v, component decay, and the fully developed cellular structure is
aligned in the streamwise direction with axial velocity fluctuations of period equal to
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Figure 19. Onset of time-dependent flow in the cylinder wake. (a) Experimental time series of axial
velocity v,(f) measured at (§,v,8) = (0,0, 1.4), De = 1.88 and Re = 0.0157; (b) FFT spectrum shows
very low frequency of oscillation corresponding to a wave speed of U, & 0.013 mm s7*; (¢c) velocity
time series v,(¢) measured at (& v,§) = (0,0,1.5), De = 3.31 and Re = 0.0387; (d) FFT spectrum

shows an increased frequency of oscillation and a wave speed of U, ~ 0.043 mm s7*.

the cylinder radius. The cells slowly decay at large distances from the cylinder as the
fluid in the wake approaches the channel centreline velocity. At a distance of 10
cylinder radii downstream the axial velocity has almost recovered the uniform
rectangular channel profile documented in figure 3.

Similar LDV measurements coupled with direct flow visualization show that the
three-dimensional wake structure is confined to the narrow region of predominantly
extensional flow near the centreplane of the channel. Scans of the velocity at a fixed
axial position of { = 1.50 and different points in the transverse y-direction are shown
in figure 18. On the channel centreplane (v = 0) the axial velocity has the rapid
fluctuations of wavelength A, = 0.5R documented above. The periodic bright and
dark cellular structure can still be observed in flow visualization experiments if the
plane of laser light is slightly offset from the centreline and the velocity component
v,(x) at v = 0.53 still shows oscillations, with a period equal to the cylinder radius.
However, at greater distances from the centreplane the flow between the cylinder
and the channel walls is primarily a steady shearing flow with only a weak
elongational component, and LDV measurements of the axial velocity remain almost
two-dimensional across the channel for all values of De.

(b) Time-dependent flow in the cylinder wake, f = 0.5

As the flow rate past the cylinder is increased further a second flow transition is
observed, and LDV measurements for De > 1.85 show that the flow in the wake
becomes time-dependent. Representative time-series of the axial velocity in the
cylinder wake at (§,v,{) = (0,0, 1.4) are shown in figure 19. The velocity v,(f) shows
a nonlinear time-periodic response on a time-scale of hundreds of seconds. Video-
imaging of the flow reveals that the cells observed in the wake slowly travel outwards
from the midpoint of the cylinder (£, v) = (0, 0) towards the side-walls of the channel.
The time-dependent response in the velocity measured at a fixed point in space thus
corresponds to the slow translation of this regular cellular structure through the
measuring volume, and the nonlinear form of the oscillations arises from the complex
spatial structure of the axial velocity profile at { = 1.4 (cf. figure 17). The wavespeed
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Figure 20. Centreline axial velocity profiles in the three-dimensional wake at high Deborah
numbers show a pronounced shift downstream but increase monotonically to the free stream value
with no ‘negative wake’ or aperiodic fluctuations. (@) Slow flow, De = 0.073, Re = 0.0055. (——-)
De =1.71, Re = 0.014. ( ) De = 3.09, Re = 0.028. (£,v) = (0,0).

for this travelling structure is calculated from the spatial wavelength A, of the cells
and the temporal frequency of the velocity time-series determined by the F¥T spectra
shown in figure 190, d. As the Deborah number is raised from De = 1.88 to De = 3.31,
the frequency of oscillations increases and the wavespeed increases from U, =
0.013 mm s™* to U, = 0.043 mm s~ .

Time-dependent velocity oscillations in the wake of a cylinder are encountered in
high Reynolds number flows of newtonian fluids and very dilute polymer solutions
due to the formation of a von Kdrmdn ‘vortex street’; however, the maximum
Reynolds number attained in the experiments with this Boger fluid is only Re ~ 0.04.
The onset of time-dependence in the cylinder wake results solely from translation of
the cellular structure along the length of the cylinder and not from a periodic ‘vortex
shedding’ phenomenon in the stream-wise direction. Profiles of the centreline axial
velocity in the stagnation flows upstream and downstream of the cylinder are shown
in figure 20. These velocity measurements are made with the frequency trackers by
using the instantaneous acquisition algorithm described above and translating the
table in the z-direction at a constant velocity of w, = 1.50 mm s™. The total data
acquisition time for each profile v,(z) is only 30 s which is much smaller than the
period of oscillation documented in figure 19 for translation of the cellular structure
by one wavelength A, along the cylinder axis. Thus, each profile represents the
evolution of the wake axial velocity profile within one cell as the fluid accelerates
back up to the free stream value. The velocity profiles upstream of the cylinder
superpose when normalized with the average velocity {(v,», and elasticity does not
affect the upstream stagnation flow even at Deborah numbers of De > 3. However,
in the wake downstream of the cylinder, elastic effects result in a progressive
downstream shift in the position of the streamlines around the cylinder. The LoV
measurements for newtonian flow at De = 0.07 are also shown in figure 20 to
emphasize the magnitude of this downstream displacement; at a fixed point { =5,
the normalized axial velocity at De = 3.08 has been reduced by approximately 33 %
from its value at De = 0.07, and the flow does not recover a fully developed parabolic
profile for distances of over 15R downstream of the cylinder.
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(¢) The effect of the cylinder-channel ratio,

The wavelength of the cellular wake structure for a cylinder-channel ratio of § =
0.5 was determined from the measurements in §4.a to correlate closely with the radius
R of the cylinder. However, this observation is ambiguous since the narrow gap
(H—R) between the cylinder and the constraining channel wall is identical to the
cylinder radius for # = 0.5. To investigate the scaling of the cellular structure with
the flow geometry, additional experiments were performed with a series of cylinders
of smaller radii, which were mounted in the same channel of constant half-width,
H = 6.33 mm. In this manner the cylinder-to-channel ratio was successively reduced
to £ =0.337, # = 0.257, and g = 0.170.

In addition to the Deborah number defined in (1), which is based on the residence
time for polymer molecules near the cylinder, a Weissenberg number can be defined
in terms of the characteristic shear rate y = <{v,)/(H—R) measured in the gap
between the cylinder and the channel wall as

We = A(y){v,p/(H—R). (5)

The relative magnitude of these two dimensionless groups can be varied by
changing the geometric parameters B and H. Substitution of the cylinder—channel
ratio f = R/H into (5) shows that the two parameters are interrelated by We =
pBDe/(1—p). Hence, for a cylinder—channel ratio of # = 0.5, the Weissenberg number
is equal in magnitude to the Deborah number; however for a smaller ratio of # = 0.25
the larger gap between the cylinder and the channel wall results in lower shear rates,
and the Weissenberg number is given by We = 0.33De.

LDV measurements in each geometry show that both the cylinder radius and the
channel half-width are important in governing the evolution of the velocity field
around the cylinder; profiles of the normalized velocity do not superpose, even at
very low De, when the axial position is scaled with either R or H. This can be
explained by considering the flow in a cylindrical coordinate system (r, 0, z) aligned
along the symmetry axis of the cylinder. If we consider finding a solution to the
stagnation flow by the method of images (cf. Bairstow et al. 1923) then we would
expect the local fluid velocities will be perturbed by the cylinder out to a
characteristic radial position of » ~ H which is determined by the separation of the
rigid channel walls. Along the channel centreline (6 = 0 and 6 = m) this equates to a
streamwise distance of z ~ H that is independent of cylinder radius. The fluid in the
planar stagnation flow has to decelerate as it approaches the stagnation points S, and
S,; however, since these stagnation points are located at radial positions of » ~ R the
characteristic velocity gradients in the stagnation flow are {v,)/(H—R). Smaller
cylinders therefore result in a more gradual change in the v, velocity. The competing
influences of the confining channel walls and the size of the cylinder in the channel
can both be taken into account by defining a modified dimensionless coordinate
{* = (z—R)/H which is zero at the stagnation points S, and S, for all 8. Profiles of
the normalized centreplane velocity v,({*)/<v,) for each cylinder to channel ratio are
shown in figure 21 at a constant value De = 0.14. The velocity profiles collapse to a
single master curve and superpose in the regions very close to the stagnation points
(z ~ R) and also at larger distances into the channel (z ~ H) where the constraining
effects of the walls become important.

Further experiments at higher De show that the formation of a three-dimensional
cellular structure is observed for each value of f studied, and that the dynamics of
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Figure 21. Effect of the cylinder-channel ratio # on the centreplane axial velocity profiles in the
stagnation flow near the cylinder at a fixed Deborah number of De = 0.14. Hollow symbols denote

the upstream flow and solid symbols denote the downstream flow for cylinder-to-channel ratios of :
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Figure 22. (a) Spatial fluctuations in the axial velocity v,(x) measured in the downstream wake of
the smallest cylinder (8 = 0.170) at De = 3.18 and Re = 0.0039. (b) The FFr spectrum determines
the dominant spatial wavelength of the fluctuations as A, & 1.72+0.14 mm.

this elastic wake instability are dependent on both the Deborah number and the
Weissenberg number. The centreline axial velocity profile along the length of a
cylinder with radius R =1.08 mm (f=0.17) is shown in figure 22a for flow
conditions of De = 3.18 and We = 0.75. The velocity in the wake shows periodic
fluctuations similar to those presented in §4a; however, the oscillations have a
reduced wavelength of A, = 1.72 mm, equivalent to 1.6 times the new cylinder
radius. The power spectrum shown in figure 22b indicates that the wavelength
selection of the velocity fluctuations is not as clearly defined in this geometry and
secondary peaks are observed at A, =1.58 mm and A, =2.03 mm. The spatial
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Figure 23. Comparison of the centreline axial velocity component v, (x) at De = 1.38 for two
different cylinder—channel ratios. (@) Velocity fluctuations at { = 2.0 for larger cylinder—channel
ratio of # = 0.503. (b) The dominant wavelength of oscillations is determined from an FFT as
A, = 3.03 mm. (¢) Planar velocity profile at { = 2.0 for smaller cylinder—channel ratio of § = 0.257.
(d) FFT reveals no cellular structure in the cylinder wake.

Table 1. Spatial wavelength of the three-dimensional viscoelastic wake structure downstream of
circular cylinders

cylinder-channel ratio, £ radius, /mm wavelength, A,/mm A /R
0.503 3.188 3.03+0.15 0.95
0.337 2.135 2.55+0.12 1.19
0.257 1.628 2.30+0.10 1.41
0.170 1.075 1.724+0.20 1.60

wavelength of the three-dimensional wake structure for each geometry is summarized
in table 1.

Previous work on viscoelastic transitions in rotational flow has shown that the
onset of instabilities depends on both viscoelastic flow parameters De and We. To
determine the critical conditions for development of the wake instability in this
geometry a large series of experiments were performed which duplicated the stability
measurements documented in §4a for each value of the ratio f at (i) the same
volumetric flow rates or average velocity {v,, (ii) the same Deborah numbers De and
(iii) the same Weissenberg numbers We. Two representative results for ratios of § =
0.25 and g = 0.50 are presented in figures 23 and 24. Measurements of the axial
velocity component v,(x) at { = 2.00 for the two different cylinder to channel ratios
at a constant Deborah number De = 1.38 are shown in figure 23. The flow past the
larger cylinder (8 = 0.50) shows spatially periodic oscillations in the cylinder wake
with a cellular wavelength of A, = 0.95R, whereas the flow near the smaller cylinder
(# = 0.25) remains two-dimensional with no velocity fluctuations along the length of
the cylinder.

Similar measurements of the axial velocity component v,(x) for the two different
cylinder—channel ratios at the same average upstream velocity <v,> = 3.71 cm s!
are shown in figure 24. The volumetric flow rate ) and average velocity are the same
for each geometry ; however the Deborah number for the geometry with the smaller
radius cylinder is approximately twice that for § = 0.50. The larger gap between the
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Figure 24. Comparison of the axial velocity component »,(x) at the same upstream flow conditions
{v,y/H = 5.86 57! for two different values of the cylinder—channel ratio f. (a) Larger cylinder—
channel ratio of # = 0.503 at flow conditions De = 1.38, We = 1.38 show velocity fluctuations (b)
of dominant wavelength A, = 3.03 mm. (¢) Velocity profiles at { = 3.0 for smaller cylinder—channel
ratio of # = 0.257 and De = 2.57, We = 0.94 show velocity fluctuations (d) with reduced wavelength
A, = 2.40 mm.

Table 2. Critical flow conditions for onset of the three-dimensional wake instability in viscoelastic
flow past a cylinder

p - Rjem oy flems)  y/st D, We, Re,
0.170 0.1075 2.25 20.97 2.3540.08 0.53+0.02 0.0031
0.257 0.1628 2.64 16.20 1.87+0.13 0.68+0.04 0.0055
0.337 0.2135 3.31 1548 1.80+0.04 0.95+0.02 0.0090
0.503 0.3188 3.49 10.93 1.30+0.01 1.30+0.01 0.0142

channel wall and the cylinder edge for # = 0.25 however results in a smaller value of
the Weissenberg number. Periodic oscillations are observed in both velocity profiles,
and the difference in the wavelength of these oscillations is discernible in the rrr
spectra presented in figure 24 b, d. If the flow rate through the # = 0.25 configuration
is increased further so that equivalent values of the Weissenberg number are attained
in each geometry, the flow past the smaller cylinder remains unstable, though the
amplitude of the velocity oscillations increases significantly.

A sequence of experiments for a number of intermediate flow rates between those
presented in figures 23 and 24 were performed to determine the critical conditions for
the onset of the elastic wake instability in each geometry. These critical conditions,
indicated by a subscript ¢ for the four different cylinder—channel ratios studied in this
work are summarized in table 2.

The experimental measurements in each geometry have been used to construct an
approximate stability diagram for viscoelastic flow past a cylinder in a channel. The
results for the four cylinder—channel ratios are shown in figure 25. Stability
measurements performed by increasing the volumetric flow rate for a fixed geometric
ratio A lie along lines in Weissenberg—Deborah number space with constant slope
We/De = /(1—p). The abscissa corresponds to the case of a cylinder in an
unbounded viscoelastic fluid (8 0). For low flow rates the velocity profiles in the
wake of the cylinder are flat, and the flow is steady and two-dimensional. At the
critical conditions given in table 2 this base flow becomes unstable, and the velocity
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Figure 25. A stability diagram for viscoelastic flow past cirular cylinders of radius R in planar
channels of half-height H. The flow in the wake of the cylinder is a steady two-dimensional
stagnation flow at low Deborah numbers (hollow symbols) but develops a three-dimensional
cellular structure at high De (filled symbols).

profiles in the cylinder wake develop the three-dimensional cellular structure
documented above. It can be seen from figure 25 and table 2 that the onset point of
the transition varies with the cylinder—channel ratio f; however, measurements
indicate that the critical Deborah number De, increases by only 30% as the
cylinder—channel ratio is decreased from # = 0.50 to g = 0.26, whereas the critical
Weissenberg number is reduced by a factor of 2. These observations suggest that the
onset point of the transition and the wavelength of the cellular structure scale more
closely with the Deborah number and the cylinder radius; although a weaker
modulation on the Weissenberg number and the channel gap is also evident. A more
complete evaluation of the We/De parameter space contained in the stability
diagram requires a large number of additional experiments for different cylinder-to-
channel ratios g.

5. Conclusions

The Lpv technique has proved to be an extremely powerful tool for exploring the
flow transitions that are observed in viscoelastic flows through complex geometries.
The measurements presented in this work are the first experimental observations of
a three-dimensional elastic instability that occurs within the planar extensional flow
in the wake of a circular cylinder. At a critical Deborah number the steady two-
dimensional flow undergoes a bifurcation to a steady, three-dimensional motion
consisting of a spatially periodic cellular structure that extends along the length of
the cylinder. The LDV measurements coupled with video flow visualization clearly
show that this structure corresponds to cells of fluid moving with a local axial
velocity that is higher than the average value. To satisfy continuity constraints these
regions are supplied with fluid from neighbouring slower moving cells on either side.
The flow remains symmetric about the channel centreplane (y = 0) and there is no
measurable v, velocity component in this plane (within the resolution of the three-
colour LDV system). It is thus possible to define local streamlines for this two-
dimensional planar region, and figure 26 shows a sketch representing the fluid
streamlines along the central plane of the channel which helps explain the complex
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F_Ax“'l
Figure 26. An approximate representation of the streamlines along the channel centre-plane

(y/R = 0) showing the spatial evolution of the velocity profiles and the development of a cellular
structure in the cylinder wake.

oscillations in the velocity field that have been documented in figures 15-17. Near the
cylinder at { = 1.5 the streamlines are curved and the velocity has significant v, and
v, components, as fluid alternately converges into the faster moving regions
(corresponding to the brighter regions in figure 14b) and diverges from the slower
moving areas. A profile of the axial velocity at this point shows periodic oscillations
with a wavelength A, & 3R. Farther downstream of the cylinder the cells are fully
developed and the streamlines are almost parallel to each other. The v, component
of velocity decreases and for { > 2.0, the wake consists of a regularly spaced cellular
structure with periodic fluctuations in the velocity of wavelength A, ~ R.

The first observations of cellular-type instabilities in duct flows of viscoelastic
fluids were made by Giesekus (1972). Photographs of polyisobutylene solutions
discharging at high shear rates from channels of rectangular cross-section showed the
formation of regularly spaced ‘grooves’ in the surface of the jet which travelled
outwards from the midpoint towards the edges of the channel. Subsequent
observations of this transition by Tomita & Takahashi (1978) demonstrated that the
spacing of the cells depended on the aspect ratio of the channel, but was essentially
a free-surface phenomenon associated with the die-swell at the exit of the duct and
independent of the upstream flow configuration.

Very recently Chiba et al. (1990) have presented qualitative flow visualization
images that reveal the onset of a similar cellular transition in the viscoelastic flow of
a dilute, shear-thinning, aqueous polyacrylamide solution through a 10:1 planar
contraction. Streak photographs of longitudinal cross-sections through the con-
traction (i.e. along the neutral axis) reveal that, at a critical flow rate, the planar
extensional flow along the contraction centreline becomes unstable and develops a
three-dimensional structure. This three-dimensional motion consists of an approxi-
mately periodic array of cells which arise from faster and slower moving regions
of fluid that are spaced along the neutral axis of the planar contraction. At higher
flow rates these ‘bundle-like streams’ were also observed to travel slowly across the
width of the contraction. More recent streak line observations in a 5:1 planar
contraction showed that these structures appear to have the form of Gortler vortices
with significant streamwise vorticity (Chiba et al. 1992). Unfortunately, few
quantitative details of the spatial wavelength and critical conditions for the onset of
this instability were provided by the authors, but the high flow rates and shear-
thinning character of the test fluid resulted in Reynolds numbers of 17 < Re < 53 in
the unstable flow régime. It thus seems that inertial effects in the contraction flow
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transition are also important, in contrast to our observations of the planar
stagnation flow instability.

A previously observed transition that results in anomalous transport properties in
the flow of dilute polymer solutions past very small cylinders was discussed in §1.
Experimental correlations of the heat transfer and drag coefficients were given by
James & Acosta, and have recently been reproduced numerically by Hu & Joseph
(1990) and Delvaux & Crochet (1990). The numerical calculations considered high
Reynolds number flow past a cylinder for an upper-convected Maxwell (ucm) fluid
model, and showed that the asymptotic behaviour of the transport properties
observed by James and Acosta corresponded to a change of type in the governing
equation set. To interpret their results, Hu and Joesph introduced the concept of a
viscoelastic Mach number M = {v,)/c, where ¢ is the shear-wave speed for the vem
model, ¢ = 7,/pA, (Joseph & Saut 1986). For M < 1 the governing equation set for
viscoelastic flow of the ucm model is elliptic and the velocity solutions are smooth
everywhere; however, for M > 1, i.e. for velocities greater than the wave speed, the
equation set becomes hyperbolic and discontinuities, or shocks, can propagate along
the fluid streamlines.

To investigate whether the experimental measurements of the elastic wake
instability presented in §4 correspond to a change of type in the flow it is necessary
to know the shear-wave speed ¢ for the test fluid. The rheological characterization
presented by Quinzani ef al. has shown that the viscoelastic material functions of the
0.31% (by mass) PIB/PB/C14 Boger fluid are not accurately described by a single-
mode, quasi-linear constitutive equation such as the uvecm model, and it not
appropriate to use the simple expression above to calculate the wave speed.
Recently, Northey et al. (1989) have presented a type analysis for a multimode
formulation of the tcm model and show that the critical wave speed for propagation

of vorticity information is
o= JE2 2 ()
P Al

where 7, and A, are the viscosity and time constant of the kth relaxation mode, and
p is the fluid density.

The shear-wave speed ¢ can be evaluated for the 0.31 % (by mass) PIB Boger fluid
by using the set of {#,,A,} determined from linear viscoelastic measurements.
However, it is seen from (6) that the presence of a large newtonian solvent viscosity
s With a time constant A; = 0 results in an infinite wave-speed, and prohibits a
change-of-type in the governing equation set. Experiments at very high shear-rates
(7 > 1000 s7!) in a capillary rheometer show that, in reality, the highly viscous
polymeric PB/C14 solvent is not truly newtonian, but very weakly elastic with a
relaxation time of A, & 107" s (McKinley 1991). By combining this estimate for the
PB/C14 solvent relaxation time with the four mode spectrum given in Quinzani
et al., the speed of shear waves through the Boger fluid is calculated to be
¢=9.61 ms™'. Joseph et al. (1986) have developed a ‘wave-speed meter’ to determine
experimentally shear-wave speeds for a large number of different liquids, and the
value calculated above agrees extremely well with the range of values 8.37 < ¢ <
22.40 m s™! measured by Joseph et al. for a Boger fluid consisting of 0.25 % (by mass)
PIB in polybutene. The calculated value of ¢ =9.61 m s7' is far greater than the
values of the critical velocity <v,), given in table 2, and calculation of the
‘viscoelastic Mach number’ at the onset of the elastic wake instability reveals it to
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be only M = 3.63 x 1073 for £ = 0.50. Hence, it appears clear that the transition to
three-dimensional flow in the wake is not a change-of-type phenomenon and is
completely unrelated to the high Re experiments of James & Acosta and the related
LDV measurements of Koniuta ef al. (1980).

The LoV measurements of Bisgaard (1983) for viscoelastic flow past a sphere falling
through a cylindrical tube have indicated an elastic wake instability at low Re that
results in spatial fluctuations of the velocity in the wake. Measurements of the
centreline velocity profile in the tube showed that the velocity behind the trailing
stagnation point on the sphere did not decrease monotonically but developed rapid
aperiodic fluctuations. In contrast, the LDV measurements presented in figure 20
show that profiles of the velocity in the wake vary smoothly and monotonically in
the downstream direction, and the instability in the cylinder wake results in a
transition to a steady three-dimensional flow with a well-defined periodic spatial
structure. Unfortunately, Bisgaard’s data is insufficient to infer the spatial and
temporal structure of the flow in the wake of the sphere. However, the presence of
velocity fluctuations in the strong shearing flow between the sphere and the tube
walls which developed at values of De lower than those required for the formation of
aperiodic fluctuations in the wake of the sphere, were also reported. No similar
fluctuations were observed in LDV measurements near the cylinders studied in the
present work, and the three-dimensional flow is limited to the region of strongly
extensional flow in the wake of the cylinder.

The elastic instabilities observed in the wakes of cylinders and spheres appear to
be fundamentally different in both their spatial and temporal characteristics. Of
course, this is subject to the important caveat that the experiments of Bisgaard were
performed with a shear-thinning polymer solution rather than a constant viscosity
Boger fluid and for values of the sphere to tube radius ratio in the range 0.06 < f <
0.18. Tt is pointed out by Larson (1992) that both the fluid rheology and relevant
dimensionless geometric parameters are extremely important in governing the
precise dynamic behaviour associated with the onset of a viscoelastic flow transition.
However, it now appears clear from the Lpv measurements of Bisgaard plus those
presented in this work that both uniaxial and planar extensional flows of viscoelastic
fluids near the downstream stagnation points of submerged bodies can become
unstable at high Deborah numbers.

The velocity measurements of Sigli & Coutanceau (1977) and Bisgaard (1983) for
shear-thinning polymer solutions have both documented the existence of a ‘negative
wake’ in the steady extensional flow behind a sphere. This velocity overshoot develops
at low Deborah numbers and is not associated with the onset of time-dependent flow.
However, the LDV measurements in the cylinder wake for the 0.31% (by mass) PIB
Boger fluid show that the velocity monotonically increases from zero to the free
stream centreline value v, = 1.5{v,) at all Deborah numbers (cf. figures 6 and 20).
Maalouf & Sigli (1984) used streak photography to show that the velocity profiles
measured for a Boger fluid in the wake of a sphere were shifted downstream at high
De but remained monotonic; however similar measurements of the velocity profiles
for shear-thinning polymer solutions indicated the presence of a velocity overshoot
and a ‘negative wake’ behind the sphere. These earlier observations of no velocity
overshoot in Boger fluids are consistent with our measurements in the wake of
cylinders for a wide range of ratios g, and it is concluded that a negative wake will
only observed in stagnation flows of viscoelastic fluids which exhibit a shear-thinning
viscosity 7(y).
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In this work we have only considered one particular viscoelastic fluid, a constant
viscosity Boger fluid consisting of polyisobutylene dissolved in polybutene. It is
becoming increasingly clear that viscoelastic transitions depend not only on gross
rheological characteristics, such as the presence or absence of shear-thinning in the
viscosity, but also on the details of the macromolecular structure and the
polymer/solvent interactions. The recent work of Chmielewski et al. (1990)
investigated the elastic dependence of the drag coefficient for spheres falling through
Boger fluids consisting of both PIB and PB, and also polyacrylamide (PAA)
dissolved in viscous cornsyrup (CS). Measurements showed that the PAA/CS fluid
exhibited a monotonic decrease in the drag coefficient below the Stokes value,
whereas measurements for the PIB/PB Boger fluid showed a very small initial
decrease in the drag coefficient for De < 0.3, followed by a somewhat larger drag
increase at higher De. Similar drag increases for another PIB/PB fluid formulation
have also been presented by Tirtaatmadja et al. (1990), and it is possible that the
pronounced increase in the drag coefficient observed for De > 1 arises from the onset
of a similar elastic wake instability in the axisymmetric stagnation flow behind the
sphere. Further LDV measurements are currently underway to investigate this
possibility.

The dissimilar behaviour of the two Boger fluids indicates that the molecular
environments of the PIB and PAA macromolecules in solution are not the same, even
though rheological measurements of the viscometric properties (5, ¥,) are identical.
The stagnation flow in the wake of spheres and cylinders are strong extensional flows,
and it seems that the differences in dynamic behaviour must result from different
elongational properties of the PIB and PAA chains. The extensive flow visualization
results of Boger (1987) also reveal differences in the sequence of viscoelastic flow
transitions observed in the strongly extensional flows of PIB/PB and PAA/CS fluids
through axisymmetric abrupt contractions. It therefore appears that the stability of
complex flows of Boger fluids is a sensitive function of the elongational properties of
the polymer molecules in solution. The construction of stability diagrams from Lpv
measurements or from theoretical analyses can provide a rational interpretation of
these differences in terms of the particular ordering of a sequence of nonlinear
hydrodynamic transitions. A similar dependence of the critical onset conditions and
precise dynamic behaviour is expected in observations of the elastic wake instability
(if it exists) for PAA/CS Boger fluids. To explore this variation further, additional
LDV measurements are required for a PAA/CS fluid with the same rheological
properties as the 0.31 % (by mass) PIB/PB Boger fluid used in the current work.

The Chilcott—Rallison constitutive equation provides a convenient basis on which
to perform numerical investigations of this premise, because the extensional rheology
can be systematically modified by varying the extensibility parameter L. The
variations in the steady two-dimensional velocity around spheres and the evolution
of drag coefficient with increasing De and L have already been presented (Lunsmann
et al. 1993) and work is beginning on numerical studies of the flow stability.

One of the most general conclusions to be drawn from this work is that the base
symmetry of the problem appears to be crucial in defining the spatial and temporal
structure of viscoelastic flow transitions. In axisymmetric problems, such as
Taylor—Couette flow and tubular entry flows, elastic effects lead to the onset of Hopf
bifurcations at De ~ 1 and the development of flow regimes that are both time
dependent and three dimensional. As the Deborah number is increased, subsequent
transitions lead to period-doubling, quasi-periodic and finally aperiodic states. By
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contrast, the few experimental investigations of viscoelastic flow instabilities in
planar geometries, (e.g. extrusion from a slit die, planar entry flows and flow past
cylinders) indicate that the first flow transition is a bifurcation from a steady two-
dimensional flow to a steady, three-dimensional flow that has a periodic, cellular
structure in the ‘neutral’ direction. Only at higher De does a second flow transition
result in the development of time-dependent flow. This time-dependent motion
typically manifests itself as a translation of the periodic structure along the direction
of the neutral axis toward the edges of the test geometry.

This work has been sponsored by the Office of Naval Research and the National Science
Foundation. We thank Walter Lunsmann for providing the finite element code used in the
numerical simulations.
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“igure 14. The elastic wake instability at De = 248, Re = 0.028. (a) Video-imaging of the flow
hows the formation of a cellular structure in the downstream wake that extends along the length
t the cylinder: (b) higher magnification image close to the downstream stagnation point shows
"hat the velocity in the cylinder wake is three-dimensional with a », component parallel to the
ylinder axis.
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